

Transformer Diagnose on practical Samples

Peter Werle ABB Transformer Service

Dr.-Ing. Peter Werle has studied Electrical Engineering at the University of Hannover, where he afterwards received his Dr.-Ing. degree at the Schering-Institute for High Voltage Technique and Engineering.

Since 2003 he is with ABB AG, Transformer Service in Halle, Germany, where he has hold different national and international positions. Since 2010 he is the general manager of the Transformer Service Workshop in Halle with more than 200 employees. He is member of VDE, IEEE, DKE K 182 insulation liquids and CIGRÉ as liason officer A2 - IEC TC 10 and active in different working Groups. He is the author or co-author of more than 100 publications and owner of more than 20 patents in Asset Management, Diagnostic Methods, Monitoring and High Voltage Testing.

Transformer Diagnose on practical Samples

Janusz Szczechowski, Dr. Peter Werle, ABB AG, Transformer Service Center Halle, Germany

Transformer Life Management 2014 Transformer Diagnosis on Practical Examples

© ABB Group October 9, 2014 | Slide 1

Power and productivity for a better world™

Introduction Condition Assessment – WHY ?

© ABB Group October 9, 2014 | Slide 3

Transformer Diagnose on practical Samples

Oil Analysis SOT Standard Oil Test

<text><text><text><text><text><text><text>

Transformer Diagnose on practical Samples

Oil Analysis Furan Analysis

5-Hydroxylmethyl-2-Furfurol (5HMF)

- 2-Furfurylalcohol (2FOL) 2-Furfural (2FAL)
- 2-Acetylfurane (2ACF)
- 5-Methyl-2-Furfurol (5MEF)
- Correlation to DP

© ABB Group October 9, 2014 | Slide 5

- Number of cellulose units (chain length)
- New kraft paper: ca. 1000-1200
- Degradation: <200

ABB

Oil Analysis DGA Dissolved Gas Analysis

Nitrogen N_2 Oxygen O_2 Hydrogen H_2 Carbon Monoxyd CO Carbon Dioxyd CO₂ Methane CH_4 Ethane C_2H_6 Ethylene C_2H_4 Acethylene C_2H_2 Propane C_3H_8 Propene C_3H_6

 1-spectromatical 2-folder
 6600
 4.33

 2-forbanic
 2-forbanic
 7641
 1.842
 6

 2-Avantum
 0601
 1.842
 6
 2

 2-Avantum
 0601
 6.08
 2
 2

 2-Avantum
 0601
 6.08
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 -

© ABB Group October 9, 2014 | Slide 6

Transformer Diagnose on practical Samples

	ICOL	Nesun		
	H ₂ [ppm]	3	Is this	
	O ₂ [ppm]	28354	Transformer OK ?	
	N ₂ [ppm]	64150		
1	CO ₂ [ppm]	453		
	CO [ppm]	44		
	CH ₄ [ppm]	2		
	C ₂ H ₆ [ppm]	1		
	C ₂ H ₄ [ppm]	1		
	C ₂ H ₂ [ppm]	0		
	C ₃ H ₈ [ppm]	2		
T ti	Tranformer is not OK – it has a broken Membrane in the conservator !			
© ABB C October	roup 9, 2014 Silde 10		ABB	

Transformer Diagnose on practical Samples

Example 1 Description and Background

- Technical data of the transformer:

	Rated value
Voltage	110 / 20 / 10 kV
Year of manufacturing	1991
Power	31,5 MVA

- Network connecting transformer in Germany
- History:
 - Maintenance actions have been performed regularly

```
© ABB Group
October 9, 2014 | Slide 12
```


Transformer Diagnose on practical Samples

Example 1 Results of the SOT (12/2012)

Test	Result	
Breakdown voltage	71,5 kV	
Dielectr. dissip. factor	8,5 ‰	
Acidity	<0,03 mg _{KOH} /g _{Öl}	
Moisture content	4,4 mg/kg	
Interfacial tension	29,3 mN/m	

No abnormalities

© ABB Group October 9, 2014 | Slide 14

Peter Werle, ABB

Transformer Diagnose on practical Samples

Example 1 Results of the DGA (12/2012)

DGA	Gas concentration [ppm]	
H ₂ [ppm]	501	
O ₂ [ppm]	17556	,
N ₂ [ppm]	40018	In general (60599)
CO ₂ [ppm]	243	H2>CH4 -> Discharge
CO [ppm]	17	
CH ₄ [ppm]	20	H2 <ch4 -=""> Thermal</ch4>
C ₂ H ₆ [ppm]	3	Problem
C ₂ H ₄ [ppm]	1	
C ₂ H ₂ [ppm]	2	
C ₃ H ₈ [ppm]	1	
C ₃ H ₆ [ppm]	1	
Total Gas Content [%]	5,8	
© ABB Group Onlober 9, 2014 I Slide 15		ABB

© ABB Group October 9, 2014 | Slide 15

Example 1 Evaluation of the DGA

- Value H₂ of above the limit
- IEC 60599 Quotients:
 - C2H2/C2H4: 2,4; CH4/H2: 0,04; C2H4/C2H6: 0,21
 - Quotients close to PD (see table 2, IEC 60599)
- Graphical evaluation acc. to Dörnenburg

Transformer Diagnose on practical Samples

Transformer Diagnose on practical Samples

Example 2 Description and Background

- Technical data of the transformer:

	Rated value
Voltage	33 / 1.2 - 0.55 kV
Year of manufacturing	2012
Power	55 MVA

- History:
 - Increase of gas concentration was detected by a Hydran sensor
 - Recommendation by customer consultants: weekly DGA

```
© ABB Group
October 9, 2014 | Slide 20
```


Transformer Diagnose on practical Samples

Janusz Szczechowski, Dr. Peter Werle, ABB AG, Transformer Service Center Halle, Germany

Transformer Life Management 2014 Transformer Diagnosis on Practical Examples

© ABB Group October 9, 2014 | Slide 1

Power and productivity for a better world™

Introduction Condition Assessment – WHY ?

© ABB Group October 9, 2014 | Slide 3

Transformer Diagnose on practical Samples

Example 2 Results of the SOT(07/2013)

Test	Result
Breakdown Voltage	74 kV
Dielectric dissip. factor	0,9 ‰
Acidity	<0,03 mg _{KOH} /g _{Öl}
Moisture content	3,8 mg/kg
Interfacial Tension	39,8 mN/m

No abnormalities

© ABB Group October 9, 2014 | Slide 21

Transformer Diagnose on practical Samples

Example 2 Results of the DGA (07/2013)

	Test	Result
	H ₂ [ppm]	10
	O ₂ [ppm]	28354
	N ₂ [ppm]	64150
	CO ₂ [ppm]	502
	CO [ppm]	64
	CH ₄ [ppm]	35
	C ₂ H ₆ [ppm]	6
	C ₂ H ₄ [ppm]	57
	C ₂ H ₂ [ppm]	1
	C ₃ H ₈ [ppm]	2
	C ₃ H ₆ [ppm]	20
	Total Gas Content [%]	9,6
© ABB Group October 9, 2014 Slide 24		

Peter Werle, ABB

Transformer Diagnose on practical Samples

Example 2 Evaluation of the DGA

- On site performed electrical measurements:

Measurement	Result
Transmission ratio	No abnormality
Winding resistances	No abnormality
Insulation resistances	No abnormality

- No gas limit was exceeded gases are stable
- Strong changes of O₂, and N₂ concentration which are expected to be stable (DGA provided by the customer)

© ABB Group October 9, 2014 | Slide 25

Transformer Diagnose on practical Samples

Example 3 Description and Background

Technical data of the shunt reactor

	Rated value
Voltage	120 kV
Year of manufacturing	1979
Power	60 MVAr

History:

Abnormal DGA results in 2012

© ABB Group October 9, 2014 | Slide 27

© ABB Group October 9, 2014 | Slide 28

Example 3 Results of the SOT (07/2012)

Test	Result
Breakdown voltage	71 kV
Dielectric dissip. factor	2,4 ‰
Acidity	<0,03 mg _{KOH} /g _{ÖI}
Moisture content	8,8 mg/kg
Interfacial Tension	39,1 mN/m

No abnormalities

ABB

Transformer Diagnose on practical Samples

Example 3 Results of the DGA (07/2012)

Test	Result
H ₂ [ppm]	60
O ₂ [ppm]	19460
N ₂ [ppm]	54872
CO ₂ [ppm]	5229
CO [ppm]	769
CH₄ [ppm]	406
C ₂ H ₆ [ppm]	116
C ₂ H ₄ [ppm]	439
C ₂ H ₂ [ppm]	1
C ₃ H ₈ [ppm]	16
C ₃ H ₆ [ppm]	177
Total Gas Content [%]	8,1
IB Group ober 9, 2014 Slide 30	

Example 3 Evaluation of the DGA

- Limit was exceeded at Methane and Ethylene concentrations
- IEC 60599 Quotients:
 - C2H2/C2H4: 0,0; CH4/H2: 6,8; C2H4/C2H6: 3,8
 - Indication: Thermal fault between 300°C and 700°C

Transformer Diagnose on practical Samples

Example 3 Results of the DGA (07/2012)

Test	Result	
H ₂ [ppm]	60	
O ₂ [ppm]	19460	
N ₂ [ppm]	54872	
CO ₂ [ppm]	5229	Experience ABB
CO [ppm]	769	
CH ₄ [ppm]	406	C2H4/C3H6 >=2-3
C ₂ H ₆ [ppm]	116	-> Core Problem
C ₂ H ₄ [ppm]	439	
C ₂ H ₂ [ppm]	1	,
C ₃ H ₈ [ppm]	16	
C ₃ H ₆ [ppm]	177	
Total Gas Content [%]	8,1	

© ABB Group October 9, 2014 | Slide 33 ABB

Example 3 What was the problem?

- Transportation to ABB Service Center
- Visual inspection of the active part:
 - Hot spot at the core

© ABB Group October 9, 2014 | Slide 34

